Geometric Polynomial Constraints in Higher-Order Graph Matching
نویسندگان
چکیده
Correspondence is a ubiquitous problem in computer vision and graph matching has been a natural way to formalize correspondence as an optimization problem. Recently, graph matching solvers have included higher-order terms representing affinities beyond the unary and pairwise level. Such higher-order terms have a particular appeal for geometric constraints that include three or more correspondences like the PnP 2D-3D pose problems. In this paper, we address the problem of finding correspondences in the absence of unary or pairwise constraints as it emerges in problems where unary appearance similarity like SIFT matches is not available. Current higher order matching approaches have targeted problems where higher order affinity can simply be formulated as a difference of invariances such as lengths, angles, or cross-ratios. In this paper, we present a method of how to apply geometric constraints modeled as polynomial equation systems. As opposed to RANSAC where such systems have to be solved and then tested for inlier hypotheses, our constraints are derived as a single affinity weight based on n > 2 hypothesized correspondences without solving the polynomial system. Since the result is directly a correspondence without a transformation model, our approach supports correspondence matching in the presence of multiple geometric transforms like articulated motions.
منابع مشابه
Matching Integral Graphs of Small Order
In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملTopology Preserving Graph Matching
We describe an algorithm for graph matching which preserves global topological structure using an homology preserving graph matching. We show that for simplicial homology, graph matching is equivalent to finding an optimal simplicial chain map, which can be posed as a linear program satisfying boundary commutativity, simplex face intersection and assignment constraints. The homology preserving ...
متن کاملON THE MATCHING NUMBER OF AN UNCERTAIN GRAPH
Uncertain graphs are employed to describe graph models with indeterministicinformation that produced by human beings. This paper aims to study themaximum matching problem in uncertain graphs.The number of edges of a maximum matching in a graph is called matching numberof the graph. Due to the existence of uncertain edges, the matching number of an uncertain graph is essentially an uncertain var...
متن کاملHIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1405.6261 شماره
صفحات -
تاریخ انتشار 2014